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ADSTRACT

Y

For a cylindrically symmetric plasma colu:f.n_whose electron
density N is a slowly varymg,b monotonically decreasing function of radius
r, it is possible to calculate explicitly both the diffraction pattern from the
knowledge of Nir) and, conversely, N{r) from the knovledge of the diffrac-
tion pattern. If the diffraction pattern is obtained experimentally, N{r) can
be calculated by a cumbersome numerical procedure. Instead of doing this,
ihe diffraction pattern can be approximated by one of a family of convenient
aralytical express:ons for which the integration ca;': be‘carried out easily.
Alternat:vely, one can attempt to tafer N(r) by assuming a functional form ‘
for N{(r) with one or more parameters, calculate the aiffraction pattern and

compare it with the observed one.

\
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1. Introduction

Itis fossxble to determine the electron density distribution in a
lossless plasma cylinder by i1lluminating it with a plane electromagnetic
wave and observing the diffraction pattcfn. Let us assume that the plasma
cylinder is long compared to wavelength and that the plasma density de{ 2nds
on the distance from the axis alone. This plasma cylinder 1s illuminated by
a weak plane electromagnetic wave incident at right angles to the axis,
polarized so that its electric vector 1s parallel to the axis. The electric

field has a single axial component E, which satisfies the wave equation

2
['72 vk (r)] E, =0 (1)
| i
where !.’
2 2 V{r)ez
k S - - .
(r) “0‘0 ! €C Mo (2)
\ o ‘
2 2,
= k - N(r)p e /m
o o
and
- - angular frequency of the wave

LX) ¢ - magnetic permeability and dielectric
constant of free space

e,m - elcctronic charge, mass

N(r) electron density (no. of electrono/ms)

k - u/p t , free space wavenumber
o o9 _

Far away from the plasma cylinder the field consists of the incident plane

wave and an outgoing cylindrical wave. From the dependence of thﬂ: power
density in the cylindrical wave on the angular direction or on the (reclluency

it is possible to deduce the radial distribution N(r). This inverse scatiering
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praoblem has received considerable attention in quantum mechanics. The

wave equation then is

2 2
(vo+xk“in]e = 0 {3)
where
2
Wi = 5’—;— E - —-’; V(r)
% %

The energy E here plays the same role as the frequency does in the case
of plasma, and the potential energy V(r) corresponds to the electron density
distribution. In quantum mechanics one normally tries to construct the
potential function Vir) from kncwn scattering data {either total scattering
cross-section, or differential scattering cross-section in a fixed direction)
as a function of energy. This 13 basically the same procedure as is used,
for example, inionospheric sounding, where frequency is varied. The
method dealt with here utilizes scattering data in all directions at a single
energy (frequency).

Whatever type of data 1s used, the exact inversion problem is an
extremely difficult one to solve!. For this reason we may resort to an ap-
proximatioan. [f the variation of properties of the medium is slow, i.e., the
relative change per wavelength i1s small, then we can resort to a WKB or
geometric-optical approxamation. We shall assume that the geometric-
optical approximation is valid, calculate the differential scattering cross-
section from the electron density distridbuticn on that basis, and then invert

that relationship so as to obtain the electron density distribution from the

differential scattering cross-section.

1. I.M. Gelfand and B. M. Levitan, lav. Akad. Nank SSSR, Mat. Ser, 15, 309
(1951)
Doklady Akad. Nank SSSR, 77, $57(1951)
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2. Differenual Scattering Croses-3ection and Impact Parameter

Consider a plane wave 1ncident perpendicularly on a plasma coiumn;
the rays are initially parallel straight lines (See Fig. 'a). When thesc rays
enter the ionized region, they are deflected. The imuict parameter b for a
given ray is defined as the distance between the central ray (ray in the plane
of symmetry of the plasma column) and the given ray. If (he incident wave
carries unit power per unit width (this 1s a * .0-dimensional geometry}, then
the power conta.ned between rays with impact parameter b and b + db is
db. If these rays emerge from the plasma at angles @ and 6 + d8, then,

on the basis of geometric-optical cons:deration,
gd9 = db ' (4)

where o 13 the scattered power per umit angle, or the diuiferential scattering

cross-section. We see that o(8) and 6(b) are simply reiated as follows:
gi{t) = — . (5)

The first step in the inversion process is to calculate 8(b), given g(8).

Even if, as we shall assume, the 1onizatton density N 15 a monotonic de-
creasing function of r, there may be a difficulty in this step. We have to
distinguish between soft, ur penetrable, obatacles, and hard, cr impenetrable

ones. If the plasma column is impenetrable then the tentral ray is deflected

“through 1802, while d:stant raya are not deflected ‘see Fig.1h). In that

case, b(B) is a single-valued function, and there is no difficulty in inte -
grating ¢(0) to obtain b(8), and then to invert that relation to oﬁta'ui 8(b).
If, on the other hand, the plasma column is penetrable (Fig. lc), the central
ray is not deflected, and other rays are deflected through various angles

ranging from zero to a certain riaxamum value 00 {maximum diffraction
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angle). H=nce there are two rays deflectec 1n any given direction 8, and
b(8) ‘3 double-valued.

In the latter case the differential scattering cross-secti‘orﬂ will
oscillate rapidly as a function of @ as a result of interference between
the two rays deflected in the same direction. At the peaks the two intensities
add, at the minima they subtract. If we plct intensity {square root of dif-
ferential cross-section) vs. 8, we can readily construct the curves showing

L. + - ]
the variation of the sum, [, and the difference, !, of the two ray inten-

sities Il and 1|

2 (see Fig.2). Assuming 12>l,, we have

1+
/o =I,=-2—(I-I)
(6)

There are difficulties to be expected in reconciling experimental data with
ray theory. If we star® from 4 dependence of the impact parameter b on 8,
such as shown on Fig. 2¢ then we notice that the intensity associated with the
inner ray (1) becomes infinite at eo, and the intensity associated with the
outer ray (2) becomes :nfinite at 8 = 0 and at 00. No such singularities
will, of course, bec observed. They appear in the geometric-optical approxi-
mation because the approxamation is not valid a” those values of 6 as a
cons:quence of the behavi;)r of the caustic surface in this case. Should the
ionization density be identically zero outside sorne finite radius then the
singularity at @ = 0 may disappear. In any cas?, we can utilize only those
prrtions of the curves which are not too closeto 8=0 or 8= 60. Thé
problem is thean to construct all of the curve on Fig. 2c from the knowledge

of the slope of this curve {or, rather, the slopes of its two branches) in

the range a<6<6°-ﬂ.




FIBMRI[-826-00C 5

It can be shown that, for small values »f immpact parameter, the
ray deflection is proportional to the impact parameter. This means that wé
can extend the curve I} to 9 = 0 simply by assuming that I1 remains
constant for 0 <8 <a. Thus we obtain b vs. 8 from the originto 0 = 60 -B.
We shall assume that while the scattering data in the range 90 -p<oc< eo,
cannot be used, the value of 60 is known, and that the value impact param-
eter at 6 = 6, - P, as well as the slope of the b vs. 8 curve (the slope is-
simply the differential scattering cross-section ¢), are known, and finally
that the shape of the 8 vs. b curve is parabolic (see Fig. 2d), i.e.),

2
(8 -8) o= (b -b)

With these assumptions, the difference between the two values of impact
parameter at 0 = 90 - B, bZ - b1 is given by

b,-b = 4pa(8_- B) ’ (7)

where o'(eo - B) is the differential scattering cross-section in the direction
=6 -p. Since bl is known, equation (7) establishes a point on the

o
second branch of the b vs. 8 curve. From that point we can continue the

curve by using experimental values of scattering cross-section again.

3. Ray Path and Deflection Angle

The differential equation satisfied by the ray path r(8) ina
cylindrically stratified medium can be re'a.dil); obtained from Snell's law,
If the dielectric constant is a function of r, then Srell's law takes on the

form

\/c(r)/co r sina = constant (8)

where a is the angle between the ray direction and the radial direction
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(see Fig. 3). Since for large r, ¢ e, T sin a — b, the constant on the
right-hand side of (8) is simply the impact parameter b of the given ray.

From triangle PP'Q (see Fig. 3) we see that

rde ¥

e tan a . 19)

Elimin‘ating a between equations (8) and (9), we obtain the differential equa-

tion of the ray

(rd0/dr)’ = ‘(rzt,/bzco- ! (10)
In the case of a lossless plasma the dielectric constant is

c/;o = (k/ko)z = 1 - N(r)ez/comu‘z (11)

Let us introduce a notation which has the double purpose of making the rela-
tion (11) and those which follow, more compact, and at the same time bring
out the similarity of the problem at hand and the corresponding one in particle

mechanics; let us introduce
. 2
Vi(r) = N(r)ez/tomu . (12)

Combining equations (10), (11) and (12) yields the final form of the differen-

tial equation of the ray with the impact parameter b

o s s a2
d8 r Z[ 2 7y zvm] / _ (13)

dr

The angle between the direction along which the ray comes in from infinity,

and the divection along which it goes out to infinity again is then

® de
2 f |a—r-
r

o

dr .
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The deflection angle of the ray, i.e., the limiting value of the angular co-

ordinate as r —p o, becomes

® r ) ) -1/2
8(b) = x-2fr Z[b L ZV(r)] dr (14)

r

o

where T the distance of closest approach for this ray, is the zers of the
expression in bracksts (%;- = 0 at ro).

We will now investigate the function 8(b) ‘or various ionization
density distributions. We have to distinguish between two types of distribu-
tions: penetrable and impenetrable. The illustrative examples will be of
the former type. We shall consider three ionization distriﬁutions:

{1) uniform (2) parabolic and (3} modified parabolic. The mathematical
definitions of these three distributions, as well as the relations between the
deflection angle and the corresponding impact parameter are .isted in

Table I. The functions 6(b) were obtained simply by evaluating the integral
in Eq. (14) with the appropriate distribution function V{r). The results
listed in Table I are also shown graphically on Figs. 4, 5, and 6. The case
of the uniform cylinder is different in character from the two others because
the medium is discontinuous in this case. The geometric optical field con-
sists of refracted, reflezted and many multiply reflected and refracted con-
tributions. If we consider only the refracted ray, then the deflection angle
increases monotonically until b = a/TT\‘r;; for larger values of impact
parameter the incident ray is totally reflected, unﬁl, for b > a, the in-
cident ray completely misses the cylinder and is not deflected. The remain-
ing two models present no such complications. In the case of a parabolic
distribution the deflection angle is identically zero if the ray misses the
cylinder, i.e., b>a, while in the modified parabolic distribution in which
the extent of plasma is infinite, the defiection angle tends to zero as b in-

creases.
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TABLE 1
V(r) 8/b) : I b
o o
2
V(r)=V ,r<a (b/a)y" <1 -V
[o] o
=0 ,r>a e(b)—zmn’l b/a si 'l-) zsin‘lfv' a/T-V_
= R = n o - o
J-v
o
b2 4
2
r (=) -¢(-- 1-V
= - = < - -1
vir) Vo[l (a)]'r a 8(b)=sin '_o a sin 'V a 5
2 . 2
=0 , r>a \ {l_)_) +,1 vo)
o'a 2
Vir)=v |1 -l-(l)2 <a|m/a)i<i - Ya,
= PP R Rl T2
. b2 1-Vo
1 a?’ 4 - (';) T2
=5V°(;) »r>a |g(b)= = +sin
| 1-VNE v,
)22
2 2 a
-1 b2 Vo
— sin (=) +T
be Yo
(=) + 3
A\

(b/a)e > 1 - -59:

o(b) = w [1 - !
Vo a2
.;“7‘;’
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It is interesting to observe the dependence of_ the maximum ray
deflection angle on maximum density V0 for the two continuous models.
The maximum deflection angle should be easily observable since outside
this angle there is no geometric optical scattering, only true diffraction.
At sufficiently high frequencies, the differential scattering cross-section
should drop rapidly to very small values at this angle. ‘We see from Fig.7
that there is very little difference between the two models in their effect on
the maximum deflection angle. Therefore we may conjecture that, so long
as the variation of density near the center of the plasma column in quadratic,
the maximum density can Be inferred from the maximum deflection angle
with reasonable accuracy. Since the relation between the two quantities
is particularly simple in the case of the parabolic model, we can make use

of it, thus concluding that

V_ v sin® (15)
o ) ‘

may be a fair approximation fcr a great variety of smoothly varying distribu-

tions.

4. The Inverse Problem

We shall now proceed to invert equation (14), i.e., to solve it for
V(r) if 8(b) is given. In order to accomplish this, we shall reduce the
equation to one of Abel type, and then use thé well-known solution of the Abel
integral equation. The procedure uied here is identical with that employed
in a previous solution of the integral equation (H).z It is convenient to intro-

duce the new variables x, u, v, and w, defined as follows:

2. J.B. Keller, I. Kay and J. Shmoys, "Determination of the Potential from
Scattering Data®, Phys. Rev., Vol.102, No.2, 557-559, April 15, 1956.
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< =b (16a)
w =t (16b)
viu) = 1-V (16c)
w = wly! (16d)

In terms of the new variables, equation (14) becomes

X o-1/2

w=-8(x) _ v (du/dw) .

== iz 9 oan
o (x - w)

If we now recognize that the numerator of the integrand is simply an unknown

function of w, equation (17) is of Abel type. Denoting the numerator of the

integrand in (17) by g(w), we have

w
-1/2 d |1 ¥ - 0(x)
v (du/dw) = g{w) = — [— dx
dw |2 : (w-x)l72
(18)
w
_ Lw-l/z 1 d 8(x)dx
2 2w dw 5 (w-x)l72
From (16d) we see that
du 1 -1/2 1/2 1 1/2 -1/2 dv
aw zZv¥ oYty vy e
and therefore
glw) = %w-l/z + %wl/z v.l dv/dw . (19)

Solving this equation for v interms of g(w) and noting that v 2 1 when

w s 0, we obtain
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w

viw) = exp [ [Z(w')‘l/z glw') - (w')"jdw' . (0
[+7

Substituting the expression for g(w) from (18) into (20), we obtain

!’ *w w!
v{w) = exp Ll— f ! d f 9 (x)dx (21)

LS ™ e

Having thus found v(w), we can now calculate r = u-l = v-1/24-1/2 and

V=1-v. The calchlation of V(r) is then a parametric one, with w as a

parameter.

5. Special Cases of 8 vs. b Variation -

In principle the procedure of the preceding section can be ap-
plied to numerical data for 8(b). The integral in (21) would have to be
evaluated numerically for a large number of values of parameter w;
this is clearly a cumbersome procedure. If, instead of evaluating the inte-
gral numerically, we could approximate the numerical data for @(b) by
one of a family of analytic expressions which would permit explicit evalua-
tion of v(w), the procedure would be greatly simplified. We shall now dis-
cuss one such family of functions 6(b). These functions are linear for
small value of b, reacha m-aximum 0= eo at b= bo {this implies a soft,
or penetrable distribution), and then tend to zero as some inverse power of

b; The defining equation for 0 is

n+l
2
b l+n .
0x0 ~— (c2)

2
ol|n+ (b/bo)

For large b, 6~b-n. We are going to consider the special cases n = |, 2.

(See Fig.8.)
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For the case n=1 we have

0 2b/b,
-é—- = —-L_Q—E (23)
o 1+ (b/b)
[e]
So that
w
0(x)dx 2x eo 1
f = =N -/ (24}
o WX’ o 1+wb
o
and

w
viw) = exp -eob;z f (w' + b; ) (w') dw'
o

(25)

1/2
exp [-zeo [wb: /(wb:+ 1] / ]

The parametric equations for the normalized plasma density V in this case

are then

-1
-20 (l+l/wbz) /
Viw)= 1 -¢  ° ° (26)

-1/2

2
rw) = W-1/2  8g(141/whg) @en

It is clear from the above equation that small values of w correspond to
large values of r, and conversely. While it i imposasible to eliminate w
bcfwnn equations (26) and (27), and thus obtain V as afunctionof r
directly, it is possible to accomplish this approximately for very small or
very large r. We are primarily interested in the valueof V at r = 0,

i.e., Vo. and in the manner in which V tends to zero for large r:

20,

w—om.r-—oo,voul-c. (28)
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, -1/2 ~28 ywb [ o2
w20, rxw , V=la¢ ~2s ze b/r
O

(29)
For the case n =2 we have
o _»| 3 P oo
% % |2+ /)t "
o
so that .
w 3324 1o’ w 2/t w
0(x)dx o v . =1 o : o ‘
f = =5t 3 - sin 7 - 3 (31)
o ,w-k o l 1+2b 142b w
: o o
ard
- /
-2‘33 29 bz w ‘Z
v(w) = exp _0 0 f (1 + Zw'bz) dw'
» o
R o
- 32)
/ (
i ¥2q
o
FEXP T T
(' +1/2b w)
8 o
The pahmetric equations for V(r) in this case are:
3 ' i .
Viw) = | - exp [-3 z(eo/.) (1+ l/szw) '] (33)
1/2 L) o \ -
rw)sw / exp [ 3 /2 (804'21) 1+ l/Zbiw) l] (34)
The behavior of V(r) at r=0 and r-s0 is, in this case
RV
W — O Voll-c 9o/* {35)
2. 3¥/% u2
-1/2 3/2 2 o
w—p 0: rmw \' 2% (ﬁo/t)° Zbowz 3 (36)

»r
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The plasma density distribution obtained from these models for two values
of maximum de‘lection angle is plotted in Fig. 9.
We can use the results obtained in this section to study further

_the relation between maximum deflection angle and maximum normalized
plasma density. The results obtained for the two models used in this section
are compared with the results for a parabolic distribution in Fig.10. The
relation between the maximum deflection angle and maximum electron density
. for either of the two models investigated in this section is not very different
from that obtained for a quadratic density variation.  Given the frequency
of the probing wave and the maximum deflection angle, we can again estimate
the maximum electron density in the ionized column by the use of eq. (15).
If more accuracy, or more information about the distribution is required,
we must compare the experimentally observed relation between a scaftering
angle and impact parameter with those used in this report, pick out one that

corresponds mcre closely than the others, and look up the corresponding

electron distribution.
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